Централизованное тестирование по физике, 2011

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4 \pm 0,2)$ Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Физическим явлением является:

1) метр

2) кипение

3) скорость

4) масса

5) динамометр

2. Установите соответствие между физическими величинами и учёными-физиками, в честь которых названы единицы этих величин.

1) Генри
Джоуль
3) Герц

1) A1 E2 B3

2) A1 B3 B2

3) А2 Б1 В3

4) A2 B3 B1

3. По параллельным участкам соседних железнодорожных путей в одном направлении равномерно двигались два поезда: пассажирский и товарный. Модуль скорости пассажирского поезда $\upsilon_1=44~\frac{\mathrm{KM}}{\mathrm{q}},$ товарного – $\upsilon_2=80~\frac{\mathrm{KM}}{\mathrm{q}}.$ Если длина товарного поезда L=0,60 км, то пассажир, сидящий у окна в вагоне пассажирского поезда, заметил, что он проехал мимо товарного поезда за промежуток времени Δt , равный:

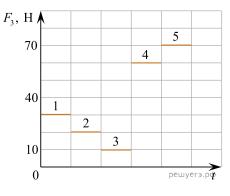
1) 17 c

2) 27 c

3) 38 c

4) 49 c

5) 60 c

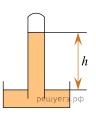

4. Тело, брошенное вертикально вниз с некоторой высоты, за последнюю секунду движения прошло путь $s = 55,0\,$ м. Если модуль начальной скорости тела $v_0 = 10,0 \, \frac{\mathrm{M}}{c},$ то высота h равна:

1) 180 м

2) 175 м

5) 150 м

5. Тело двигалось в пространстве под действием трёх постоянных по направлению сил $\vec{F}_1,\,\vec{F}_2,\,\vec{F}_3.$ Модуль первой силы F_1 = 15 H, второй — F_2 = 40 H. Модуль третьей силы F_3 на разных участках пути изменялся со временем так, как показано на графике. Если известно, что только на одном участке тело двигалось равномерно, то на графике этот участок обозначен цифрой:



1) 1

2) 2

3)3 4) 4 5) 5

6. Запаянную с одного конца трубку наполнили глицерином ($\rho=1260~\frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$), а затем погрузили открытым ... концом в широкий сосуд с глицерином (см.рис.). Если высота столба глицерина h = 7,90 м, то атмосферное давление р равно:

1) 98,0 кПа 2) 98,8 кПа

3) 99,5 кПа

4) 101 κΠa

5) 102 κΠa

7. Если абсолютная температура тела изменилась на $\Delta T = 50 \text{ K}$, то изменение его температуры Δt по шкале Цельсия равно:

1) $\frac{50}{273}$ °C 2) $\frac{273}{50}$ °C 3) 50 °C 4) 223 °C 5) 323 °C

8. В результате изотермического процесса объем идеального газа увеличился от $V_1 = 5.0$ л до $V_2 = 6.0$ л. Если начальное давление газа p_1 = 0,18 МПа, то конечное давление p_2 газа равно:

1) 0,11 MΠa

2) 0,13 MΠa

3) 0,15 MΠa

4) 0,16 MΠa

5) 0,22 MΠa

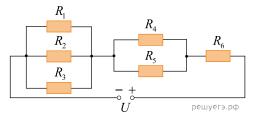
9. В некотором процессе над термодинамической системой внешние силы совершили работу $A = 25 \, \text{Дж}$, при этом внутренняя энергия системы увеличилась на $\Delta U = 40$ Дж. Количество теплоты Q, полученное системой, равно:

1)0

2) 10 Дж

3) 15 Дж

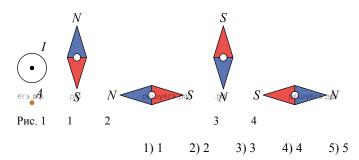
4) 25 Дж


10. На рисунке приведено условное обозначение:

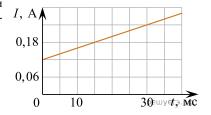
- 1) колебательного контура
- 2) конденсатора
- 3) гальванического элемента
- 4) катушки индуктивности

5) резистора

11. В электрической цепи, схема которой приведена на рисунке, сопротивления резисторов $R_1 = 50,0$ Ом, $R_2 = 75,0$ Ом, $R_3 = 75,0$ Ом, R150 Ом, R_4 = 180 Ом, R_5 = 20,0 Ом, R_6 = 7,00 Ом. Если напряжение на клеммах источника тока U = 18 В, то на резисторе R_2 сила тока I_2 равна:


- 1) 120 mA
- 2) 135 MA
- 3) 150 mA
- 4) 185 mA
- 5) 240 mA

12. Три точечных заряда $q_1 = 32$ нКл, $q_2 = 45$ нКл и $q_3 = -11$ нКл находятся в вакууме и расположены вдоль одной прямой, как показано на рисунке. Если расстояние a = 7.6 см, то потенциальная энергия W электростатического взаимодействия системы этих зарядов равна:


- 1) 50 мкДж
- 2) 61 мкДж
- 3) 75 мкДж
- 4) 82 мкДж
- 5) 91 мкДж

13. Прямой проводник с током I расположен перпендикулярно плоскости рисунка (см.рис. 1). В точку A поместили небольшую магнитную стрелку, которая может поворачиваться вокруг вертикальной оси, перпендикулярной плоскости рисунка. Как расположится стрелка? Правильный ответ на рисунке 2 обозначен цифрой:

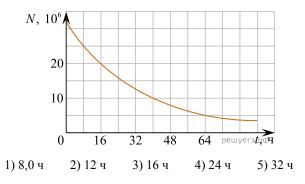
5) В точке A магнитное поле не создается, ориентация стрелки будет произвольная

14. На рисунке изображён график зависимости силы тока I в катушке индуктивности от времени t. Если индуктивность катушки L = 93 м Γ н, то энергия W магнитного поля катушки в момент времени t = 15 мс была равна:

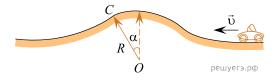
- 1) 1,5 мДж
- 2) 2,7 мДж
- 3) 3,2 мДж
- 4) 4,2 мДж
- 5) 6,9 мДж

15. Поплавок, качаясь на волнах, распространяющихся со скоростью, модуль которой $v = 1, 8 \stackrel{\mathrm{M}}{=} .$ Если расстояние между соседними гребнями волн l=2,0 м, то частота ν колебаний поплавка равна:

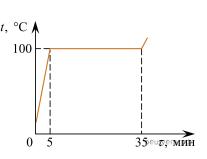
- 1) $0.30 c^{-1}$ 2) $0.45 c^{-1}$
- 3) $0.60 c^{-1}$ 4) $0.75 c^{-1}$
- 5) $0.90 c^{-1}$

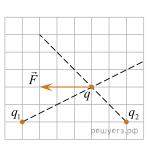

16. На дифракционную решётку, период которой d=6.5 мкм, падает нормально параллельный пучок монохроматического света. Если угол отклонения излучения в спектре пятого порядка $\theta = 30^{o}$, то длина волны λ световой волны равна:

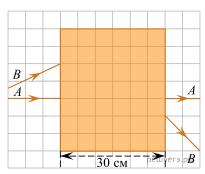
- 1) 550 нм 2) 600 нм 3) 650 нм 4) 700 нм 5) 750 нм
- 17. Атом водорода при переходе с шестого энергетического уровня ($E_6 = -6,04\cdot 10^{-20}~{
 m Дж}$) на четвертый (${
 m E_4} = -1,36\cdot 10^{-19}\,$ Дж) испускает фотон, модуль импульса p которого равен:


водорода при переходе с шестого энергетического уровня (
$$E_6 = -6,04\cdot 10^{-20}$$
 Дж) на $\cdot 10^{-19}$ Дж) испускает фотон, модуль импульса p которого равен:

1) $7,03\cdot 10^{-27}$ $\frac{\text{K}\Gamma\cdot\text{M}}{\text{c}}$
2) $1,61\cdot 10^{-27}$ $\frac{\text{K}\Gamma\cdot\text{M}}{\text{c}}$
3) $6,03\cdot 10^{-28}$ $\frac{\text{K}\Gamma\cdot\text{M}}{\text{c}}$
4) $2,52\cdot 10^{-28}$ $\frac{\text{K}\Gamma\cdot\text{M}}{\text{c}}$
5) $8,83\cdot 10^{-29}$ $\frac{\text{K}\Gamma\cdot\text{M}}{\text{c}}$


18. На рисунке изображён график зависимости числа N нераспавшихся ядер некоторого радиоактивного изотопа от времени t. Период полураспада $T_{1/2}$ этого изотопа равен:


- **19.** Легковой автомобиль движется по шоссе со скоростью, модуль которой $v = 30 \, \frac{\mathrm{M}}{c}$. Внезапно на дорогу выскочил лось. Если время реакции водителя t = 0.60 с, а модуль ускорения автомобиля при торможении $a = 6.0 \frac{M}{c^2}$, то остановочный путь s (с момента возникновения препятствия до полной остановки) равен ... м.
- 20. С помощью подъёмного механизма груз равноускоренно поднимают вертикально вверх с поверхности Земли. Через промежуток времени $\Delta t = 10$ с после начала подъёма груз находился на высоте h = 50 м, продолжая движение. Если сила тяги подъёмного механизма к этому моменту времени совершила работу A = 44 кДж, то масса m груза равна ... кг.
- **21.** Тело массой m = 0,25 кг свободно падает без начальной скорости с высоты H. Если на высоте h = 20 м потенциальная энергия тела по сравнению с первоначальной уменьшилась на $_{\rm II}$ = 65 Дж, то высота H равна ... м.
- **22.** Автомобиль массой m=1 т движется по дороге со скоростью, модуль которой $\upsilon=30\frac{\mathrm{M}}{\mathrm{c}}$. Профиль дороги показан на рисунке. В точке C радиус кривизны профиля R = 0.34 км. Если направление на точку C из центра кривизны составляет с вертикалью угол $\alpha = 30,0^o$, то модуль силы F давления автомобиля на дорогу равен ... кН.


- **23.** В баллоне находится смесь газов: неон ($M_1=20~\frac{\Gamma}{_{
 m MOJIb}}$) и аргон ($M_2=40~\frac{\Gamma}{_{
 m MOJIb}}$). Если парциальное давление неона в три раза больше парциального давления аргона, то молярная масса M смеси равна ... $\frac{1}{\text{МОЛЬ}}$
- **24.** Небольшой пузырёк воздуха медленно поднимается вверх со дна водоёма. На глубине $h_1 = 97$ м температура воды ($ho=1,0\frac{\Gamma}{CM^3}$) $t_1=7,0^{\circ}\mathrm{C}$, а на глубине $h_2=1,0$ м температура воды $t_2=17^{\circ}\mathrm{C}$. Если атмосферное давление $p_0=1,0\cdot 10^5~\Pi \mathrm{a}$, то см $^{\circ}$ отношение модуля выталкивающей силы F_2 , действующей на пузырек на глубине h_2 , к модулю выталкивающей силы F_1 , действующей на пузырек на глубине h_1 , равно ...
- **25.** К открытому калориметру с водой $\left(L=2,26\ \frac{{\rm M}\text{Дж}}{{\rm K}\Gamma}\right)$ ежесекундно подводи- t, °C ли количество теплоты Q = 93 Дж. На рисунке представлена зависимость температуры tводы от времени τ . Начальная масса m воды в калориметре равна ... г.

26. На точечный заряд q, находящийся в электростатическом поле, созданном зарядами q_1 и q_2 , действует сила \vec{F} (см.рис.). Если заряд q_1 = -48 нКл, то заряд q_2 равен ...нКл.

- **27.** Зависимость силы тока I в нихромовом $\left(c=460\frac{\mathcal{I}_{\text{K}\Gamma}}{\text{K}\Gamma}\right)$ проводнике, масса которого m=30 г и сопротивление R=1,0 Ом, от времени t имеет вид $I=B\sqrt{Dt}$, где B=0,1 А, D=2,5 с⁻¹. Если потери энергии в окружающую среду отсутствуют, то через промежуток времени $\Delta t=2,0$ мин после замыкания цепи изменение абсолютной температуры ΔT проводника равно ... К.
- **28.** Две частицы массами $m_1=m_2=0,400\cdot 10^{-12}~{\rm K}\Gamma$, заряды которых $q_1=q_2=1,00\cdot 10^{-10}~{\rm K}\pi$, движутся в вакууме в однородном магнитном поле, индукция B которого перпендикулярна их скоростям. Расстояние $l=100~{\rm cm}$ между частицами остаётся постоянным. Модули скоростей частиц $\upsilon_1=\upsilon_2=15,0~\frac{{\rm m}}{c}$, а их направления противоположны в любой момент времени. Если пренебречь влиянием магнитного поля, создаваемого частицами, то модуль магнитной индукции B поля равен ... мТл.
- **29.** В идеальном LC-контуре, состоящем из катушки индуктивностью L=80 м Γ н и конденсатора ёмкостью C=0,32 мк Φ , происходят свободные электромагнитные колебания. Если максимальная сила тока в катушке $I_0=75$ м Λ , то максимальный заряд q_0 конденсатора равен ... мкKл.
- **30.** На тонкую стеклянную линзу, находящуюся в воздухе за ширмой, падают два световых луча (см.рис.). Если луч A распространяется вдоль главной оптической оси линзы, а луч B так, как показано на рисунке, то фокусное расстояние F линзы равно ... см.

